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Abstract

Here is the brief note of Lie Group and Lie Algebra taught in Hunan University by

Prof. Zhen FANG. Enjoy the study !
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1 Groups: Discrete or Continuous, Finite or Infinite

Direct product of groups H ≡ F ⊗G. If f ∈ F , g ∈ G, then (f, g) ∈ H.

• Multiplication: (f, g)(f ′, g′) = (ff ′, gg′);

• Identity: IH = (IF , IG);

• Inverse: (f, g)−1 = (f−1, g−1);

• |F | = m, |G| = n, |H| = mn;

A map f : G→ G′ of a group into the group G′ is called a homomorphism if it preserves
the multiplicative structure of G, that is, f(g1)f(g2) = f(g1g2). A homomorphism becomes an
isomorphism if the map is one-to-one and onto.

1.1 Finite groups

Example 1.1 Finite groups

1. Cyclic groups: Zk =
{
I, g, g2, · · · , gk−1

}
with gk = I;

2. Permutation group Sn: all permutations of n objects;

3. Alternating group An: even permutations of n objects;

4. Quaternion group: Q = {±1,±i,±j,±k}

Theorem 1.2 Lagrange’s theorem
If group H with m elements is a subgroup of G with n elements, then m is a factor of n.

Theorem 1.3 Cayley’s theorem
Any finite group G with n elements is isomorphic (that is, identical) to a subgroup of the
permutation group Sn.

Theorem 1.4 Square root of the identity
Let G be a finite group of even order (G has an even number of elements). There exists at least
one element g 6= I such that g2 = I.

The set of transformations that leave the n-sided regular polygon invariant form the
dihedral group Dn.

Dn =
〈
R, r|Rn = I, r2 = I, rRr = R−1

〉
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Two generators: the roration R through 2π/n and the reflection r through a median.

rRr =

(
1 0

0 −1

)(
cos θ − sin θ

sin θ cos θ

)(
1 0

0 −1

)
=

(
cos θ sin θ

− sin θ cos θ

)
= R−1

1.1.1 Equivalence class

In a group G, two elements g and g′ are equivalent (g ∼ g′) if there exists another element
f such that g′ = f−1gf . The transformation f−1gf is also called the conjugate of g. If g and
g′ are equivalent, we also say that g is conjugate to g′

Proposition 1.8 Facts about equivalent class

• Every element in an abelian group constitutes a class;

• The identity itself constitutes a class in any group;

• Given a class c = {g1, · · · , gnc}, the inverse c̄ =
{
g−11 , · · · g−1nc

}
forms a class;

1.1.2 Invariant subgroup, simple group and quotient group

Let H = {h1, h2, · · · } be a subgroup of G. Then g−1Hg is also a subgroup of G. If
g−1Hg = H for all g ∈ G, then H is called an invariant subgroup or normal subgroup of G,
which is denoted by H / G or G . H.
A group is called a simple group if it does not have any proper invariant subgroup.

Theorem 1.11 The kernel of a homomorphism of G is an invariant subgroup of G
Let f be a homomorphic map of a group G into itself: f(g1)f(g2) = f(g1g2). The kernel of f ,
that is, the set of elements that are mapped to the identity, is an invariant subgroup.

Proposition 1.12 The cosets of an invariant subgroup form the quotient group
Let H = {h1, h2 · · · } be an invariant subgroup of G. Then the left coset of H is equal to its
right coset (Hg = gH). The series of cosets {g,H|gi ∈ G} form a group called quotient group
denoted by Q = G/H. For example Z2 = Q/Z4. We have N(Q) = N(G)/N(H). Note that Q
is not a subgroup of G in general.
Proof Close under multiplication (gaH)(gbH) = (gagbH)since(gahi)(gbhj) = ga(gbg

−1
b )higbhj =

gagb(g
−1
b higb)hj = (gagb)(hlhj) with hl = g−1b higb. The identity is IH = H and the inverse of

gH is g−1H.

Derived subgroup Define (a, b ∈ G)

〈a, b〉 ≡ a−1b−1ab = (ba)−1(ab)
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Denote by {x1, x2, · · · } the objects 〈a, b〉 with a, b ∈ G. These objects (maybe some of them)
constitute a subgroup of G, known as the derived subgroup D. The identity is 〈a, a〉 = I and
the inverse 〈a, b〉−1 = 〈b, a〉.
(Note that the product 〈a, b〉 〈c, d〉 need not have the form 〈e, f〉 for some e, f ∈ G, and derived
subgroup D is not necessarily equal to the set of all objects of the form 〈a, b〉 as a and b range
over G.)
The object 〈a, b〉 ≡ a−1b−1ab = (ba)−1(ab) measures how much ab differs from ba. In other
words, the derived subgroup tells us how non-abelian the group G is. The larger D is, the
farther away G is from being abelian, roughly speaking. Conversely, D = I for abelian groups.

Example 1.13

1. The derived subgroup of Sn, An;

2. The derived subgroup of A4, V = Z2 ⊗ Z2;

3. The derived subgroup of Q, Z2 = {1,−1};

4. The derived subgroup of Z4, I;

Proposition 1.14

D is an invariant subgroup of G.

Theorem 1.15

Given a group G and one of its invariant subgroups H, form the quotient group Q = G/H.
Suppose that Q has no invariant subgroup, then H is the maximal invariant subgroup.

2 Group Representation

Given a group, the idea of a representation is to associate each element g with a d ⊗ d

matrix D(g) such that
D(g1)D(g2) = D(g1g2)

which “reflects” the multiplicative table of the group. D(I) = Id and D(g−1) = D(g)−1.
(2413) = (24)(41)(13)

Q: Does every group G have a representation?
A: Every finite group can be represented by matrices since every finite group is isomorphic to
a subgroup of Sn.
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number of reducible representations: infinite;
number of irreducible representations: finite.

Trivial, faithful, unfaithful, defining or fundamental representations
◦ In representation theory of Lie groups and Lie algebras, a fundamental representation is an
irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose
highest weight is a fundamental weight. For example, the defining module of a classical Lie
group is a fundamental representation. Any finite-dimensional irreducible representation of a
semisimple Lie group or Lie algebra can be constructed from the fundamental representations
by a procedure due to Elie Cartan. Thus in a certain sense, the fundamental representations
are the elementary building blocks for arbitrary finite-dimensional representations.

Character of a representation: We write D(r)(g) for the matrix representing the element g
in the representation r. The character χ(r) of the representation is defined by

χ(r)(g) ≡ trD(r)(g)

Character is a function of equivalent class: if g1 ∼ g2, then χ(r)(g1) = χ(r)(g2).

Theorem Unitary representations and unitary theorem for finite groups
Finite groups have unitary representations, D†(g)D(g) = I for all g and all representations.
Suppose H is

H =
∑
g

D̃†D̃

then diagonalize it:
ρ2 = W †HW =

∑
g

(
D̃(g)W

)†
D̃(g)W

is diagonal, real and positive. Then D(g) ≡ ρW †D̃(g)Wρ−1 is unitary.

Theorem Unitary theorem for compact groups:
The representations of compact groups are unitary.

Product representation: The direct product of two representations r and s of a group G with
representation matrices D(r)(g) and D(s)(g) of dimensions dr and ds respectively is also a rep-
resentation of G of dimension drds, which is called the (direct) product representation and
is denoted by r ⊗ s.

D(g) = D(r)(g)⊗D(s)(g)

D(g)aα,bβ = D(r)(g)ab ⊗D(s)(g)αβ
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Proof

D(g)D(g′) =
(
D(r)(g)⊗D(s)(g)

) (
D(r)(g′)⊗D(s)(g′)

)
=
(
D(r)(g)D(r)(g′)

)
⊗
(
D(s)(g)D(s)(g′)

)
= D(gg′)

An important question is how the product representation reduces to a direct sum of irre-
ducible representations. (See next chapiter)

The character of the direct product representation of two representations D(r)(g) and
D(s)(g) is

χ(c) =
∑
aα

D(g)aα,aα =

(∑
a

D(r)(g)aa

)(∑
α

D(s)(g)αα

)
= χ(r)(c)χ(s)(c)

3 Schur’s Lemma

Schur’s Lemma

Given an irreducible representation D(g) of a finite group G, if there is some matrix A such
that AD(g) = D(g)A for all g, then A = λI for some constant λ.

A lemma to Schur’s Lemma

Given an irreducible representation D(g) of a finite group G, if there is some Hermitian matrix
H such that HD(g) = D(g)H for all g, then H = λI for some constant λ.

Since D(g) is unitary, the above two statements are equivalent.

• Any matrix can be written as a sum of two hermitian matrices

A =
1

2

[
(A+ A†)− ii(A− A†)

]
• then

AD(g) = D(g)A↔ D(g)†A† = A†D(g)† ↔ A†D(g) = D(g)A†

so if there is some matrix A such that AD(g) = D(g)A for all g, then (A + A†)D(g) =

D(g)(A+A†) and i(A−A†)D(g) = D(g)i(A−A†). According to the lemma, A+A† = λ1I

and i(A− A†) = λ2I. Thus A = 1
2
(λ1 − iλ2)I.

A little lemma to a lemma to Schur’s Lemma

Given an irreducible representation D(g) of a finite group G, if there is some diagonal matrix

5



M such that MD(g) = D(g)M for all g, then M = λI for some constant λ.
Proof (M is diagonal)

[MD(g)]ij = M i
iD

i
j(g) = [D(g)M ]ij = Di

j(g)M j
j

so for all g ∈ G, all elements of M’s diagonal equal.(
M i

i −M
j
j

)
Di
j(g) = 0

• Key words for Schur’s Lemma: irreducible representation, finite group, some matrix, all
g;

• Schur’s Lemma means that you can’t find a matrix apart from the identity matrix that
commutes with all the representation matrices D(g) of an irreducible representation of a
finite gorup;

• Since all the representations of a finite (compact) group can be made unitary according
to the unitary theorem, we just assume that D(g) is unitary;

4 The Great Orthogonality Theorem

The great orthogonality theorem is the central theorem of representation theory.
Lemma

Given a d-dimensional irreducible representation D(g) of a finite group G, and define A =∑
gD
†(g)XD(g) for some arbitrary matrix X, we have λ = N(G)

d
trX

A =
∑
g

D†(g)XD(g) = λId

Proof

D†(g)AD(g) = D†(g)

(∑
g′

D†(g′)XD(g′)

)
D(g) =

(∑
g′

D†(g′g)XD(g′g)

)
A

with Schur’s lemma, A = λId, so

trA = λd =
∑
g

trD†(g)XD(g) =
∑
g

trX = N(G)trX ⇒ λ =
N(G)

d
trX

Theorem The Great Orthogonality Theorem: (select X as an identity matrix)
Given a d-dimensional irreducible representation D(g) of a finite group G, we have∑

g

D†(g)ijD(g)kl =
N(G)

d
δilδ

k
j
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with N(G) the number of group elements.
Obviously, we select Xj

k = 1 in the lemma. And it’s necessary to verify that D(g) is
irreducible in order to use Schur’s lemma.

Proposition

If r and s are two inequivalent representations, then∑
g

D(r)†(g)ijD
(s)(g)kl = 0

Proof define a dr × ds matrix
A =

∑
g

D(r)†(g)XD(s)(g)

with X an arbitrary dr × ds matrix. Using the unitarity of the two representations, we have
D(r)†(g)AD(s)(g) = A, thus for any g ∈ G

A†D(r)(g−1) = A†D(r)†(g) = D(s)(g)†A† = D(s)(g−1)A†

AA†D(r)(g−1) = AD(s)(g−1)A† = D(r)(g−1)AA†

if dr 6= ds, AA† = λIdr ⇒ λ = 0;
if dr = ds, so detA = 0 and then λ = 0; (detA 6= 0 contradicts the presumption)

A more general form of the Great Orthogonality theorem

Given two irreducible representations r and s of a finite group G with dr and ds dimensions,
respectively, and let D(r)(g) and D(s)(g) be the representation matrices, we have∑

g

D(r)†(g)ijD
(s)(g)kl =

N(G)

dr
δrsδilδ

k
j

with N(G) the number of group elements.
For each triplet (s, k, l), regard the array of complex number D(s)(g)k as a vector in an

N(G)-dim complex vector space. So
∑

s d
2
s vectors re orthogonal to each other. Since there

are at most N(G) independent vectors in an N(G)-dimensional complex vector space, thus we
have

∑
s d

2
s 6 N(G). Intuitively, the irreducible reprensentations of a group of a certain “size”

N(G) can’t be “too big”.
Eq. above leads to a reduced constraining on the nontrivial representation matrices:∑

g

D(r)†(g)ij = 0

which is obtained by taking s to be the trivial representation and let k = l and sum it.

Corollary Orthogonality theorem for characters
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Let χ(r)(c) and χ(s)(c) be characters of two irreducible representations D(r)(g) and D(s)(g) of a
finite group G with dr and ds dimensions respectively, we have∑

c

nc
[
χ(r)(c)

]∗
χ(s)(c) = N(G)δrs

with nc denoting the number of elements belonging to class c.

We could construct a character table displaying χ(r)(c) of a finite group G with N(C)

row representing different irreducible representations r and N(R) columns representing different
equivalence classes c. Take A4 as an example, (ω = exp(2πi/3))

A4 nc c 1 1’ 1” 3

1 I 1 1 1 3
Z2 3 (12)(34) 1 1 1 -1
Z3 4 (123) 1 ω ω∗ 0
Z3 4 (132) 1 ω∗ ω 0

which satisfies the orthogonal theorem.

5 Real, Pseudo-real and Complex Representations

Conjugate representation

Let D(g) furnish an irreducible representation r of a group G. Then D(g)∗ also forms a
representation of G. D(g1)

∗D(g2)
∗ = D(g1g2)

∗, which is known as the conjugate of r denoted by
r∗, or the conjugate representation of G with respect to r. The characters of the representation
r∗ is the complex conjudate of the characters of r:

χ(r∗)(c) = trD(g)∗ = [trD(g)]∗ = χ(r)(c)∗

Complex & noncomplex representations

The question whether the two representations r and r∗ are equivalent or not leads naturally to
be complex and noncomplex representations. If r and r∗ are equivalent, if there is a matrix S
such that (for all g ∈ G)

D(g)∗ = SD(g)S−1

we say r and r∗ is noncomplex; otherwise complex.

Using characters to determine whether a representation is complex or noncomplex
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• if a character χ(r)(c) is complex, χ(r)(c)∗ 6= χ(r)(c), then the representation r is complex;

• if the representation r is noncomplex, then all the characters χ(r)(c) are real: χ(r)(c)∗ =

χ(r)(c) for all c.

Proof Note that for noncomplex representation the characters of the conjudate representation
R∗ are equal to the characters of r:

χ(r∗)(c) = trD(g)∗ = trSD(g)S−1 = χ(r)(c)

Constraints on S for noncomplex representations

Suppose that D(g) furnishes a noncomplex irreducible representation r of a group G, then the
matrix S of similarity transformation satisfies the following properties:

• S is either symmetric of anti. if S is symm , we say that the irreducible representation r
is real;

• if S is antisymmetric (ST = −S), we say that the irreducible representation r is pseu-
doreal;

• S is unitary S†S = I.

Proof r is noncomplex and unitary

D(g)∗ = SD(g)S−1

Lemma The square root of a unitary symmetric matrix is also unitary symmetric.
Given a unitary symmetric matrix U , there exists a unitary symmetric matrix W such that
W 2 = U .

Proposition Real representation is really real
If an irreducible representation is real, then there is some basis in which all the entries of the
matrices D(g) are real.
Proof suppose that there is a unitary symmetric matrix W such that W 2 = S, we have
W−1 = W † = W ∗ and

W 2D(g)W−2 = D(g)∗ ⇒ WD(g)W−1 = W−1D(g)∗W = W ∗D(g)∗(W−1)∗ = (WD(g)W−1)∗

Theorem

An invariant bilinear exists if and only if the irreducible representation is noncomplex (real or
pseudo-real). More precisely, (D(g) unitary)

9



• Let r be a noncomplex irreducible representation r and S be the similarity transformation
matrix relating the two conjugate representations r and r∗ by D∗(g) = SD(g)S−1, then
yTSx is an invariant bilinear.

• Conversely, if yTSx is invariant, then the two irreducible conjugate representation fur-
nished by D(g) and D∗(g) must be noncomplex (or equivalent), i.e. D∗(g) = SD(g)S−1.

Proof

D∗(g) = SD(g)S−1 ↔ D∗(g)S = SD(g)↔ S = DT (g)SD(g)↔ yTSx→ yTD(g)TSD(g)x = yTSx

The inverse of the above proof is clearly true. In the above proof we did not use the uni-
tary (anti-)symmetric property of S, just used the unitarity of D(g). The core is to prove
S = DT (g)SD(g).

Given an irreducible representation r furnished by D(g), we can construct a matrix S of
the form

S ≡
∑
g∈G

D(g)TXD(g)

for an arbitraryX such that yTSx is an invariant bilinear automatically (since S = DT (g)SD(g)).

Proposition Sum of the characters of squares in complex irreducible representation
1. If the irreducible representation is complex, then we have, for arbitary X,

S ≡
∑
g∈G

D(g)TXD(g) = 0

2. If the irreducible representation is complex, then (with Xil = 1 only)∑
g∈G

D(g)ijD(g)lk = 0

3. If the irreducible representation is complex, then∑
g∈G

D(g2)ik = 0

4. If the irreducible representation is complex, then∑
g∈G

χ(g2) = 0

Proposition Sum of the characters of squares in noncomplex irreducible representation

10



• The irreducible representation r is noncomplex (real or pseudo-real) iff for some X.

S ≡
∑
g∈G

D(g)TXD(g) 6= 0

• If the irreducible representation r is noncomplex, then∑
g∈G

χ(g2) = η
∑
g∈G

χ(g)χ(g) = ηN(G)

with η = ±1. For real representations, η = 1; for pseudo-real representations, η = −1.

Thus, we have a criteria on the reality of the irreducible representation by the sum of characters.
Written in another form ∑

g∈G

σfχ
(r)(f) = η(r)N(G)

η = 1, real; η = −1, pseudo-real; η = 0, complex; where σf is the number of square roots (that
belong to G) of each f ∈ G, that is, the number of different solutions g ∈ G to the equation
g2 = f ∈ G. Note that some σf might be 0.

Proposition The number of square roots in a group G
Given the irreducible representation r (or the character table) of a group G, the number of
square roots of each element f ∈ G is determined by the formula

σf =
∑
r

η(r)χ(r)(f) =
∑
r∈R

χ(r)(f)−
∑

r∈pseudo

χ(r)(f)

Particularly, the number of square roots of the identity is

σI =
∑
r

η(r)dr =
∑
r∈R

dr −
∑

r∈pseudo

dr

Proof (f ∈ c, f ′ ∈ c′)

∑
r

η(r)χ(r)∗(f ′)N(G) =
∑
r

(∑
f∈G

σfχ
(r)(f)

)
χ(r)∗(f ′) =

∑
f∈G

σf

(∑
r

χ(r)(f)χ(r)∗(f ′)

)

=
∑
f∈G

σf
N(G)

nc
δcc′ = σc′N(G)

The sum of the representation matrices of squares in complex or noncomplex irre-

ducible representations

Given an irreducible representation r furnished by D(g), the sum of the representation matrices
of squares in this irreducible representation is∑

g

D(r)(g2) =

(
η(r)

dr
N(G)

)
I
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with ηr = 1, real; ηr = −1, pseudo-real; ηr = 0, complex.
Proof We construct another matrix A of the form A ≡

∑
gD(g2)

D−1(g′)AD(g′) = D−1(g′)

(∑
g

D(g2)

)
D(g′) =

∑
g

D(g′−1gg′g′−1gg′) = A

by Schur’s lemma, we have A = cI with c determined by taking the trace:∑
g

trD(r)(g2) = cdr =
∑
g

χ(r)(g2) =
∑
f

σfχ
(r)(f) =

∑
s

η(s)
∑
f

χ(s)∗(f)χ(r)(f) = η(r)N(G)

Sum of characters of the product of squares in complex or noncomplex irreducible

representations∑
f

∑
g

χ(r)(f 2g2) = N(G)
(
η(r)/dr

)∑
f

χ(r)(f 2) =
(
N(G)η(r)

)2
/dr

∑
h

τhχ
(r)(h) =

(
N(G)η(r)

)2
/dr

where τh denotes the number of solutions of f 2g2 = h2 for each h ∈ G. Multiplying by χ(r)∗(h′)

and summing over r:

∑
r

(∑
h

τhχ
(r)(h)

)
χ(r)∗(h′) = N(G)2

∑
r

[(
η(r)
)2
/dr

]
χ(r)∗(h′)

=
∑
h

τh

(∑
r

χ(r)(h)χ(r)∗(h′)

)
=
∑
h

τh
N(G)

nc
δcc′ = τh′N(G)

we get
τh = N(G)

∑
r

(
η(r)
)2
χ(r)(h)/dr

Particularly

τI = N(G)
∑
r

(
η(r)
)2

= N(G)

(∑
r∈R

1 +
∑

r∈pseudo

1

)
remark that this simple formula determines the number of solutions to the equation f 2g2 = I

in group G.

6 Symmetry, Representation, Degeneracy in Quan. Mech.

Proposition

1. In quan mech, transformations are realized as unitary operators T .
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2. A set of transformations T s(that we assume to be closed with multiplication) how the
Hamiltonian H invariant form a symmetry group G.

(T1T2)
†H(T1T2) = H

3. If T leaves H invariant (i.e. T †HT = H), its action on ψ produces an eigenstate of H with
the same energy E.

H(Tψ) = HTψ = THψ = TEψ = E(Tψ)

Remark

1. Under a transformation T , the Hamiltonian H as an operator transforms by H† = THT †

2. Since T is unitary, a transformation T leaves the Hamiltonian H invariant if and only if T
commutes with H
3. One should be aware that when we say a quantum system has a symmetry (or is invariant
under a symmetry group G), it is equivalent to say that the Hamiltonian H is invariant under
the transformations T s of G. Since

H ′ = THT † ⇒ H ′ψ′ = Eψ′ ⇒ ψ′ = Tψ

the invariance of H under T implies that the eigenvalue equations have the same form before
and after the transformation T (i.e. the system is invariant ...)

Proposition

If a quantum system has a d-field degeneracy, these should be a symmetry hiding in this
system, and the d degenerate eigenstates ψ furnish a d-dimensional irreducible representation
of the symmetry group G.

ψa → ψ′a = D(T )abψb D(T2T1) = D(T2)D(T1)

Conversely, if a quantum system is invariant under a symmetry group G, the irreducible repre-
sentations of G determine the possible degeneracies of the system.

Proposition

Let ψa, a = 1, · · · , d be solutions of Hψa = Eaψa. If the states ψa form a d-dimensional
irreducible representation of a symmetry group G with Tψa = D(T )abψb, then ψa have the
same energy Ea = E.
Proof The fact that ψa form an (irreducible) representation of G implies that THT † = H

THψa = THT †Tψa = HTψa = D(T )abHψb = D(T )abEbψb

THψa = EaTψa = EaD(T )abψb ⇒ D(T )abEb = EaD(T )ab

13



which could be written as the matrix form D(T )E = ED(T ) with E = EId.
Consider a quantum system with Z2 symmetry

ψ′ = Sψ =
1√
2

(
1 1

1 −1

)(
ψ1

ψ2

)
=

1√
2

(
ψ1 + ψ2

ψ1 − ψ2

)
=

1√
2

(
ψ(x) + ψ(−x)

ψ(x)− ψ(−x)

)
≡

(
ψ+

ψ−

)

note that

(
1 1

1 −1

)
combines two diagonal matrices.

(
1 0

0 1

)
and

(
0 1

1 0

)
...

Proposition 4.5 The irreducible tensor representation of SO(3)
1. Besides the trivial representation, the totally symmetric traceless tensors

(with

Sij being vectors that form the vector (or defining) representation ) furnish all the irreducible
tensor representations of SO(3)...

... 2. The number of all possible ways of 1,2,3 distributed on the indices of Si1i2···ij is

j∑
k=0

(k + 1) =
1

2
(j + 1)(j + 2)

Proposition 4.6 The (real) irreducible tensor representations of SO(2) 1. Besides the trivial
representation, the totally symmetric traceless tensors Sxxx () furnish all the (real) irreducible
tensor representations of SO(2), which are denoted by js. 2. The dimensions of the (real)
irreducible tensor representations of SO(2) furnished by Sxxx

Polar deccomposition....
When not restricted to real representations, the representation given in 4.20 is in fact reducible,

1√
2

(
1 1

i −i

)(
cos jθ sin jθ

− sin jθ cos jθ

)
1√
2

(
1 1

i −i

)
=

(
exp(ijθ) 0

0 exp(−ijθ)

)
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